
117-214

School of 
Computer Science

Principles of Software Construction

’tis a Gift to be Simple or Cleanliness is Next to Godliness

Midterm 1 and Homework 3 Post-Mortem

Josh Bloch Charlie Garrod



217-214

Administrivia

• Homework 4a due Thursday, 11:59 p.m.
– Design review meeting is mandatory



317-214

Outline

I. Midterm exam post-mortem

II. Permutation generator post-mortem

III. Cryptarithm post-mortem



417-214

Midterm exam results



517-214

Anyone know a simpler expression for this?

if (myDog.hasFleas()) {

return true;

} else {

return false;

}



617-214

Hint: it’s not this

return myDog.hasFleas() ? true : false;



717-214

Please do it this way from now on
We reserve the right to deduct points if you don’t

return myDog.hasFleas();



817-214

DnaStrand should be immutable

• Much safer – value can’t change underneath you

• Trivial to use concurrently – no synchronization necessary

• More efficient – can share instances

• Always make simple value classes immutable!



917-214

What’s the best representation for a base?



1017-214

What’s the best internal representation for a strand?



1117-214

In a real-world setting, performance concerns might intrude

• The human genome has about 3 billion base pairs
– Would take up  24 GB with our current representation

– But each base pair has only 2 bits of actual information

– So you could cut this down by a factor of 16

• This implies a bit-vector representation
– Strand would be represented as an array of (say) int

– Where each int represents 16 bases

• But you don’t do this sort of thing until you know you have to
– Avoid premature optimization

• It would have been wrong to do this for the exam



1217-214

What are best input types for constructor (or factory)?



1317-214

A good, basic solution – Base enum (1/4)



1417-214

A good, basic solution – field and constructor (2/4)



1517-214

A good, basic solution – Object methods (3/4)



1617-214

A good, basic solution – complementarity methods (4/4)



1717-214

API is good – client code is pretty



1817-214

Why is this solution ¼ the length of many we received?



1917-214

Why is this solution ¼ the length of many we received?

• Good choice of internal representation
– Fighting with representation adds verbosity

• Makes good use of the facilities provided for us by the platform

• Makes good use of itself
– Code reuse vs. copy-and-paste



2017-214

Outline

I. Midterm exam post-mortem

II. Permutation generator post-mortem

III. Cryptarithm post-mortem



2117-214

Design comparison for permutation generator

• Command pattern
– Easy to code

– Reasonably pretty to use:

PermGen.doForAllPermutations(list, (perm) -> {
if (isSatisfactory(perm))

doSomethingWith(perm);
});

• Iterator pattern
– Tricky to code because algorithm is recursive and Java lacks generators

– Really pretty to use because it works with for-each loop

for (List<Foo> perm : Permutations.of(list))
if (isSatisfactory(perm))

doSomethingWith(perm);

• Performance is similar



2217-214

A complete (!), general-purpose permutation generator
using the command pattern



2317-214

How do you test a permutation generator?

Make a list of items to permute (consecutive integers do nicely)

For each permutation of the list {
Check that it’s actually a permutation of the list
Check that we haven’t seen it yet
Put it in the set of permutations that we have seen

}

Check that the set of permutations we’ve seen has right size (n!)

Do this for all reasonable values of n, and you’re done!



2417-214

And now, in code – this is the whole thing!



2517-214

Pros and cons of exhaustive testing

• Pros and cons of exhaustive testing
+ Gives you “absolute assurance” that the unit works

+ Exhaustive tests can be short and elegant

+ You don’t have to worry about what to test

− Rarely feasible; Infeasible for: 

• Nondeterministic code, including most concurrent code

• Large state spaces

• If you can test exhaustively, do!

• If not, you can often approximate it with random testing



2617-214

Outline

• Midterm exam post-mortem

• Permutation generator post-mortem

• Cryptarithm post-mortem
– Cryptarithm class (6 slides)

– CryptarithmWordExpression (2 slides)

– Main program (1 slide)



2717-214

Cryptarithm class (1/6) – fields



2817-214

Cryptarithm class (2/6) – constructor / parser
Sample input argument: ["send", "+", "more", "=", "money"]



2917-214

Cryptarithm class (3/6) – word parser



3017-214

Cryptarithm class (4/6) – operator parser



3117-214

Cryptarithm class (5/6) – solver



3217-214

Cryptarithm class (6/6) – solver helper functions



3317-214

CryptarithmExpressionContext
Naïve version; solves 10-digit cryptarithms in about 1 s.



3417-214

CryptarithmWordExpression
Naïve version; solves 10-digit cryptarithms in about 1 s.



3517-214

Cryptarithm solver command line program



3617-214

Conclusion

• Good habits really matter
– “The way to write a perfect program is to make yourself a perfect 

programmer and then just program naturally.” – Watts  S. Humphrey, 1994

• Don’t just hack it up and say you’ll fix it later
– You probably won’t

– but you will get into the habit of just hacking it up

• Representations matter! Choose carefully.
– If your code is getting ugly, step back and rethink it

– “A week of coding can often save a whole hour of thought.”

• Not enough to be merely correct; code must be clearly correct
– Try to avoid nearly correct.


